お問い合わせ
Go to Top

SERVICE

ALBERTができること

お客様の課題解決において、ALBERTの各サービス(AI・分析プロジェクト、プロダクト、データサイエンティスト育成支援)が実現できることを、
テーマ・活用データ・分析手法・産業別にご紹介いたします。

ピックアップ

子育て支援チャットボット

子どもの年齢や居住地域に合わせて、妊産婦や子育て世代に向けた子育てに関する様々な情報をOne to Oneコミュニケーションで提供できる仕組みをAIチャットボットとSNSツールの連携で実現。これにより、ユーザーが日中の忙しい時間に電話やメールで問い合わせをしなくても、開庁時間外でも必要な情報を取得できる環境を提供。

活用データ
分析手法

建造物の外壁劣化度診断

従来、作業員の主観や経験値で判断していた建造物の外壁劣化度診断について、画像データを用いて自動で判定するアルゴリズムを構築。学習データと検証データを活用し画像データを劣化度ごとに分類することで、学習データとの正誤率等を確認し、精度を評価。これにより、人的作業のコストの削減および診断結果の標準化を実現。

売上予測に基づく食材調達の最適化

賞味期限がある商品を扱う店舗にて、販売不振による過剰在庫の発生・需要過多による材料不足などの販売機会損失を防ぐため、日々の売上データ等を用いて最適な材料調達量や商品の売れ行きなどを予測するアルゴリズムを構築。売上データ、商品データ、店舗データの他に、気象データ、イベントデータなどを採用することで、精度の高い最適化アルゴリズムを実現。

サーバーラックの吸気温度予測精度向上

サーバーラックにおける、吸気温度の上昇を理由とした異常発生を防ぐため、各サーバーラックおよび空調の消費電力等のデータを用いて、吸気温度の変化を予測するアルゴリズムを構築。これにより、空調設備を適切な温度で管理でき、電気代等の経費削減に成功。

産業
分析テーマ
活用データ
分析手法

車載カメラ動画から車両識別・構造物識別

車載カメラの動画データを用いて障害物、走行車、歩行者等を自動的に識別するアルゴリズムを構築。これにより、レーンごとの車両有無を特定し、自車が走行しているレーンの特定が可能。また、従来の画像認識手法をディープラーニングに置き換えることにより、道路上の白線や縁石などの識別困難な画像の識別精度向上を実現。

産業
分析テーマ
活用データ

複数のセンサーデータを活用した異常動作検知

正常時のセンサーデータのみを用いてアルゴリズムを構築し、検査データ中に現れる異常を検知することで、それまで熟練者の感覚に頼っていた異常検知をAIで代替。技術伝承と省人化の両面から人手不足を解消できます。異常データが存在せず教師あり学習ができない場合でも、時系列的な変化・複数の要因を考慮できる隠れマルコフモデル(状態空間モデル)を用いて正常時から逸脱する値を異常と判定することで、アルゴリズム構築が可能。また、複数種類のセンサーデータの組み合わせに対応可能のため、人間では認識しにくい異常も検知できます。

産業
分析テーマ
活用データ
分析手法
詳しくみる

ロボットのAI化による業務効率化

ピッキング・ねじ締め・組み立てなど汎用的な作業を行うロボットは稼働前に複雑なプログラミングを行う必要がありますが、AIを用いてプログラム不要のロボットを作ることで、ロボットの実稼働までにかかる膨大な準備期間を短縮。従来のプログラミングでは対象物を二次元上の輪郭で認識させていたところを、汎用的で高精度な物体認識を行うために単眼カメラのみで対象物の形状と三次元姿勢を推定することで、プログラムが不要となります。これにより、ルールベースでの物体認識を行うことなく対象物を認識でき、準備期間の短縮と柔軟な製造品種変更が可能となります。また、色味や影等の撮像環境の変化に影響を受けにくいため、さまざまな環境下でロボットの利用が可能となります。

産業
分析テーマ
活用データ
詳しくみる