SERVICE

ALBERTができること

お客様の課題解決において、ALBERTの各サービス(AI・データ分析/研究開発支援、プロダクト、データサイエンティスト育成支援)が実現できることを、
テーマ・活用データ・分析手法・産業別にご紹介いたします。

ピックアップ

顧客育成を目的としたデータドリブンマーケティング

顧客育成を目的としたデータドリブンマーケティング

新規・既存顧客の継続率向上 、ロイヤル化、DMやカタログのCVR向上を目的として、データドリブンマーケティングを実施。ロイヤルカスタマー分析によるターゲット選定・施策の評価や、ブランド間共起分析による推奨商品の特定、顧客クラスター分析によるコンテンツ内容の決定等、さまざまなデータを活用したマーケティング分析を実行。これにより顧客タイプごとの趣向性を把握でき、DM・カタログ・メールなどで各顧客タイプに合わせたコミュニケーション設計を実現。

詳しくみる
工業生産の最適化

工業生産の最適化

人が生産時のパラメータを調整する場合には時間も検討できる組み合わせも限界がありますが、AIで代替することで、従来手法では検討できなかった組み合わせも検討対象に含めた上で加工条件の予測を最適化。既存データで実行可能性を十分検証した上で従来手法をベイズ最適化に置き換えて自動化し、効率的に最適値を求めることが可能です。これにより、品質の安定と省力化を実現し、歩留まり率を高めます。

詳しくみる
UNIX不正コマンドの自動検知

UNIX不正コマンドの自動検知

異常(不正処理)データが存在しないため、正常データのみで学習し、不正コマンドを自動検知するアルゴリズムを構築。当てはまりが著しく悪い場合を異常と判定しサーバー管理者にアラートを出す仕組みを開発することで、社内業務における不正行為(情報漏洩行為など)を抑止できます。

産業
分析テーマ
活用データ
分析手法
車載カメラ動画から車両識別・構造物識別

車載カメラ動画から車両識別・構造物識別

車載カメラの動画データを用いて障害物、走行車、歩行者等を自動的に識別するアルゴリズムを構築。これにより、レーンごとの車両有無を特定し、自車が走行しているレーンの特定が可能。また、従来の画像認識手法をディープラーニングに置き換えることにより、道路上の白線や縁石などの識別困難な画像の識別精度向上を実現。

産業
分析テーマ
活用データ
バッテリー劣化予測

バッテリー劣化予測

車輌から取得したデータを用いて、バッテリーの劣化状況を予測するアルゴリズムを構築。数ヶ月以内の劣化を予測し、交換が必要になる会員に事前通知する仕組みを実現。

産業
分析テーマ
活用データ
分析手法
複数のセンサーデータを活用した異常動作検知

複数のセンサーデータを活用した異常動作検知

正常時のセンサーデータのみを用いてアルゴリズムを構築し、検査データ中に現れる異常を検知することで、それまで熟練者の感覚に頼っていた異常検知をAIで代替。技術伝承と省人化の両面から人手不足を解消できます。異常データが存在せず教師あり学習ができない場合でも、時系列的な変化・複数の要因を考慮できる隠れマルコフモデル(状態空間モデル)を用いて正常時から逸脱する値を異常と判定することで、アルゴリズム構築が可能。また、複数種類のセンサーデータの組み合わせに対応可能のため、人間では認識しにくい異常も検知できます。

産業
分析テーマ
活用データ
分析手法
詳しくみる
店舗の契約手続き数の予測

店舗の契約手続き数の予測

過去の来店者データ等を活用し、店舗ごとの契約手続き数を予測するアルゴリズムを構築。来店者データ以外に週効果や祝日効果、キャンペーン効果、天気効果など複数の要因(変数)を加味して組み込むことで、具体的な契約手続き数を予測できます。これにより、店舗ごとの混雑状況を事前に把握でき、適切な人員配置やシフト管理の効率化を実現。