SERVICE

ALBERTができること

お客様の課題解決において、ALBERTの各サービス(AI・分析プロジェクト、プロダクト、データサイエンティスト育成支援)が実現できることを、
テーマ・活用データ・分析手法・産業別にご紹介いたします。

ピックアップ

工業生産の最適化

人が生産時のパラメータを調整する場合には時間も検討できる組み合わせも限界がありますが、AIで代替することで、従来手法では検討できなかった組み合わせも検討対象に含めた上で加工条件の予測を最適化。既存データで実行可能性を十分検証した上で従来手法をベイズ最適化に置き換えて自動化し、効率的に最適値を求めることが可能です。これにより、品質の安定と省力化を実現し、歩留まり率を高めます。

詳しくみる

電力需要の予測

過去の電力需要および気象データ、曜日データをもとに、エリアごとの電力需要を予測するアルゴリズムを構築。時間単位で精度を検証することで高精度な予測アルゴリズムを実現。これにより過剰な発電によるコストを抑えます。

詳しくみる

AI・分析プロジェクトにおけるマネジメント職育成支援

AI・分析プロジェクトのマネジメント担当者様向けに、プロジェクトガイドラインの策定方法から、目的・KPI設計・評価方法、AIアルゴリズムの概要などを学ぶことで自社でのAI・分析プロジェクトを円滑に進めるための知識を習得。

顧客育成を目的としたデータドリブンマーケティング

新規・既存顧客の継続率向上 、ロイヤル化、DMやカタログのCVR向上を目的として、データドリブンマーケティングを実施。ロイヤルカスタマー分析によるターゲット選定・施策の評価や、ブランド間共起分析による推奨商品の特定、顧客クラスター分析によるコンテンツ内容の決定等、さまざまなデータを活用したマーケティング分析を実行。これにより顧客タイプごとの趣向性を把握でき、DM・カタログ・メールなどで各顧客タイプに合わせたコミュニケーション設計を実現。

詳しくみる

正常な画像データのみを活用した外観不良検知

不良データがない場合にも、正常時の画像データを数百枚学習し、正常ではないと判断された画像に対して「不良」と判定する外観不良検知アルゴリズムを構築。これにより、人の目による再検査が大量に発生する従来の外観検査装置とは異なり、人の目による判断に近いアルゴリズムを用いて再検査を減らすことで、人手不足を解消できます。また、注目箇所の可視化により画像内のどこを重視して判断したのかを確認できるため、判断のブラックボックス化を回避可能です。

詳しくみる

交通事故要因推定アルゴリズムの構築

交通事故を減少させる目的で、交通事故要因を解明するアルゴリズムを構築。交通事故における内的要因(事故内容や当事者の属性など)と外的要因(天候、路面状況など)を分析し、特徴と傾向から事故発生との関係性の強弱を解明。これにより、開通前の新しい道路を含め、交通道路の安全性を高める対策を事前に講じることを可能にした。

書類の文字読み取り自動化

スキャナーから読み込んだ文書の画像データのレイアウト解析を行い、項目ごとの文字列(活字)を認識して返すアルゴリズムを構築。画像を補正するアルゴリズムを活用して透かし模様等のノイズに頑健なアルゴリズムを構築することで、OCR(光学的文字認識)では精度が出ないような画像に対しても文字認識精度を向上でき、99%以上の正答率で識別に成功。これにより、これまで人の手で行っていた入力作業を自動化し、コストやミスを削減できます。

詳しくみる