SERVICE

ALBERTができること

お客様の課題解決において、ALBERTの各サービス(AI・データ分析/研究開発支援、プロダクト、データサイエンティスト育成支援)が実現できることを、
テーマ・活用データ・分析手法・産業別にご紹介いたします。

ピックアップ

分析、AIプロジェクトマネジメント人材育成支援

AI・分析プロジェクトのマネジメント担当者様向けに、プロジェクトガイドラインの策定方法から、目的・KPI設計・評価方法、AIアルゴリズムの概要などを学ぶことで自社でのAI・分析プロジェクトを円滑に進めるための知識を習得。

売上予測に基づく食材調達の最適化

売上予測に基づく食材調達の最適化

賞味期限がある商品を扱う店舗にて、販売不振による過剰在庫の発生・需要過多による材料不足などの販売機会損失を防ぐため、日々の売上データ等を用いて最適な材料調達量や商品の売れ行きなどを予測するアルゴリズムを構築。売上データ、商品データ、店舗データの他に、気象データ、イベントデータなどを採用することで、精度の高い最適化アルゴリズムを実現。

大容量データ処理技術を活用し、アジャイル開発でデータ基盤を迅速に構築

大容量データを処理する技術やデータ処理を減らすためのノウハウを活用し、処理を大幅に高速化。また、従来のITシステム構築とは異なり、ウォーターフォール型の開発手法とアジャイル開発をうまく組み合わせることにより、スピーディかつユーザーフレンドリーなシステム構築が可能に。試行錯誤しながらダッシュボード開発を進めることで、迅速なデータの可視化を実現し、運用負荷を軽減。

建造物の外壁劣化度診断

建造物の外壁劣化度診断

従来、作業員の主観や経験値で判断していた建造物の外壁劣化度診断について、画像データを用いて自動で判定するアルゴリズムを構築。学習データと検証データを活用し画像データを劣化度ごとに分類することで、学習データとの正誤率等を確認し、精度を評価。これにより、人的作業のコストの削減および診断結果の標準化を実現。

旅行者の行動パターン分析・可視化

旅行者の行動パターン分析・可視化

位置情報データを用いてエリア別の滞留ユーザー数・滞留時間を分析して可視化し、一時的な通過や居住者カウントされないよう除外するアルゴリズムを構築。旅行者の滞留状況を細分化することで、移動者と滞在者それぞれに最適な施策を展開。

産業
分析テーマ
活用データ
分析手法

AI活用を見据えたデータ設計・プラットフォーム構築

生データ(機器から取得したデータや保守・点検作業のデータ等)を収集する「データレイク」や、生データを再利用可能な形にして蓄積する「データウェアハウス」等の既存システムとは別に、それと共存する形で、AI活用に適した「データマート」を新たに構築。数多くのAIアルゴリズム構築・システム開発実績で培ったノウハウを用いて、データの欠損や異常値を考慮した設計や、異なるデータ形式を共通化した上でサマライズ。AI活用を見据えたデータ設計を行うことで、迅速なデータ利活用のPDCAサイクルが可能に。

正常な画像データのみを活用した外観不良検知

製品の外観画像から製造の異常を検知、AIの判断根拠を可視化

不良データがない場合にも、正常時の画像データを数百枚学習し、正常ではないと判断された画像に対して「不良」と判定する外観不良検知アルゴリズムを開発。これにより、人の目による再検査が大量に発生する従来の外観検査装置とは異なり、人の目による判断に近いアルゴリズムを用いて再検査を減らすことで、人手不足を解消できます。また、注目箇所の可視化により画像内のどこを重視して判断したのかを確認できるため、判断のブラックボックス化を回避可能。(Explainable AI, XAI:説明可能なAI)

詳しくみる