SERVICE

ALBERTができること

お客様の課題解決において、ALBERTの各サービス(AI・データ分析/研究開発支援、プロダクト、データサイエンティスト育成支援)が実現できることを、
テーマ・活用データ・分析手法・産業別にご紹介いたします。

ピックアップ

獣医療における皮膚病の自動判定

獣医療における皮膚病の自動判定

スマートフォン等のカメラで撮影した動物の皮膚の画像に対し、診断候補となる皮膚病名を確率的に判定する仕組みを構築。同じ病名ごと・同じ個体ごとでそれぞれ学習することで判定精度が向上。これにより、医師の診察業務の効率化や、飼い主が撮影した患畜の画像を獣医師に送信して判断を仰ぐなどの遠隔対応を実現。

産業
分析テーマ
活用データ
データサイエンティスト育成支援

データサイエンティスト育成支援

データドリブンマーケティングを促進することを目的として、マーケティング担当者様向けに、ALBERTのデータサイエンティストが基本的な統計学やRの基礎プログラム等の講義を実施。データに対しての正しい見方や評価方法を学ぶことで、実践で活用できる知識を習得。

子育て支援チャットボット

子育て支援チャットボット

子どもの年齢や居住地域に合わせて、妊産婦や子育て世代に向けた子育てに関する様々な情報をOne to Oneコミュニケーションで提供できる仕組みをAIチャットボットとSNSツールの連携で実現。これにより、ユーザーが日中の忙しい時間に電話やメールで問い合わせをしなくても、開庁時間外でも必要な情報を取得できる環境を提供。

活用データ
分析手法
サーバーラックの吸気温度予測精度向上

サーバーラックの吸気温度予測精度向上

サーバーラックにおける、吸気温度の上昇を理由とした異常発生を防ぐため、各サーバーラックおよび空調の消費電力等のデータを用いて、吸気温度の変化を予測するアルゴリズムを構築。これにより、空調設備を適切な温度で管理でき、電気代等の経費削減に成功。

産業
分析テーマ
活用データ
分析手法
売上予測に基づく食材調達の最適化

売上予測に基づく食材調達の最適化

賞味期限がある商品を扱う店舗にて、販売不振による過剰在庫の発生・需要過多による材料不足などの販売機会損失を防ぐため、日々の売上データ等を用いて最適な材料調達量や商品の売れ行きなどを予測するアルゴリズムを構築。売上データ、商品データ、店舗データの他に、気象データ、イベントデータなどを採用することで、精度の高い最適化アルゴリズムを実現。

UNIX不正コマンドの自動検知

UNIX不正コマンドの自動検知

異常(不正処理)データが存在しないため、正常データのみで学習し、不正コマンドを自動検知するアルゴリズムを構築。当てはまりが著しく悪い場合を異常と判定しサーバー管理者にアラートを出す仕組みを開発することで、社内業務における不正行為(情報漏洩行為など)を抑止できます。

産業
分析テーマ
活用データ
分析手法
複数のセンサーデータを活用した異常動作検知

複数のセンサーデータを活用した異常動作検知

正常時のセンサーデータのみを用いてアルゴリズムを構築し、検査データ中に現れる異常を検知することで、それまで熟練者の感覚に頼っていた異常検知をAIで代替。技術伝承と省人化の両面から人手不足を解消できます。異常データが存在せず教師あり学習ができない場合でも、時系列的な変化・複数の要因を考慮できる隠れマルコフモデル(状態空間モデル)を用いて正常時から逸脱する値を異常と判定することで、アルゴリズム構築が可能。また、複数種類のセンサーデータの組み合わせに対応可能のため、人間では認識しにくい異常も検知できます。

産業
分析テーマ
活用データ
分析手法
詳しくみる