SERVICE

ALBERTができること

お客様の課題解決において、ALBERTの各サービス(AI・データ分析/研究開発支援、プロダクト、データサイエンティスト育成支援)が実現できることを、
テーマ・活用データ・分析手法・産業別にご紹介いたします。

ピックアップ

3次元空間上での位置・姿勢の把握

3次元点群情報の点にラベルやカテゴリを関連付ける「点群セグメンテーション」の技術を用いて、従来のRGB画像による2次元データのセグメンテーション(領域検出)では不可能だった3次元空間上での位置関係や姿勢を把握することができます。自動運転における障害物、野菜等の不定形の物体のピッキング、災害予測等にも応用可能。

UNIX不正コマンドの自動検知

UNIX不正コマンドの自動検知

異常(不正処理)データが存在しないため、正常データのみで学習し、不正コマンドを自動検知するアルゴリズムを構築。当てはまりが著しく悪い場合を異常と判定しサーバー管理者にアラートを出す仕組みを開発することで、社内業務における不正行為(情報漏洩行為など)を抑止できます。

産業
分析テーマ
活用データ
分析手法

AI・分析プロジェクトにおけるマネジメント職育成支援

AI・分析プロジェクトのマネジメント担当者様向けに、プロジェクトガイドラインの策定方法から、目的・KPI設計・評価方法、AIアルゴリズムの概要などを学ぶことで自社でのAI・分析プロジェクトを円滑に進めるための知識を習得。

顧客育成を目的としたデータドリブンマーケティング

顧客育成を目的としたデータドリブンマーケティング

新規・既存顧客の継続率向上 、ロイヤル化、DMやカタログのCVR向上を目的として、データドリブンマーケティングを実施。ロイヤルカスタマー分析によるターゲット選定・施策の評価や、ブランド間共起分析による推奨商品の特定、顧客クラスター分析によるコンテンツ内容の決定等、さまざまなデータを活用したマーケティング分析を実行。これにより顧客タイプごとの趣向性を把握でき、DM・カタログ・メールなどで各顧客タイプに合わせたコミュニケーション設計を実現。

詳しくみる
旅行者の行動パターン分析・可視化

旅行者の行動パターン分析・可視化

位置情報データを用いてエリア別の滞留ユーザー数・滞留時間を分析して可視化し、一時的な通過や居住者カウントされないよう除外するアルゴリズムを構築。旅行者の滞留状況を細分化することで、移動者と滞在者それぞれに最適な施策を展開。

産業
分析テーマ
活用データ
分析手法
複数のセンサーデータを活用した製品劣化度合い判定アルゴリズム

複数のセンサーデータを活用した製品劣化度合い判定アルゴリズム

使用に伴い摩耗・劣化していく製品の状態を判定するためのアルゴリズムを構築。現状は高価なセンサーを用いていたが、複数の安価なセンサーに置き換えることで安価かつ高頻度に製品状態を判定できるように改善。様々な種類の特徴量を作成することにより、製品の劣化度合いや劣化の種類を正確に判定できるアルゴリズムを実現。

オープンデータを活用したマーケティング戦略支援

オープンデータを活用したマーケティング戦略支援

自社で蓄積したデータ以外のオープンデータも活用し、来店者数やリピート率などの従来指標だけでなく、販売戦略や商品開発に必要な指標を新たに算出。また、データドリブンな方針策定に必要なKPIをBIツールで管理できる環境を構築し、経営層から現場まで誰もが同じデータを共有することで、より迅速な意思決定が可能となり、幅広い視野や顧客の目線に近い視点のもとマーケティングを行うことができます。

詳しくみる