SERVICE

ALBERTができること

お客様の課題解決において、ALBERTの各サービス(AI・分析プロジェクト、プロダクト、データサイエンティスト育成支援)が実現できることを、
テーマ・活用データ・分析手法・産業別にご紹介いたします。

ピックアップ

位置情報を活用したユーザー店舗滞在判定

位置情報を活用したユーザー店舗滞在判定

各ユーザーの Wi-Fiアクセスポイント履歴から、滞在した店舗を推定し行動予測するアルゴリズムを構築。これにより、ユーザのアクセスポイント(位置情報)から滞在地や移動先を推定可能となり、ユーザーの行動に応じた最適な情報配信を実現。

産業
分析テーマ
活用データ
分析手法
建造物の外壁劣化度診断

建造物の外壁劣化度診断

従来、作業員の主観や経験値で判断していた建造物の外壁劣化度診断について、画像データを用いて自動で判定するアルゴリズムを構築。学習データと検証データを活用し画像データを劣化度ごとに分類することで、学習データとの正誤率等を確認し、精度を評価。これにより、人的作業のコストの削減および診断結果の標準化を実現。

店舗の契約手続き数の予測

店舗の契約手続き数の予測

過去の来店者データ等を活用し、店舗ごとの契約手続き数を予測するアルゴリズムを構築。来店者データ以外に週効果や祝日効果、キャンペーン効果、天気効果など複数の要因(変数)を加味して組み込むことで、具体的な契約手続き数を予測できます。これにより、店舗ごとの混雑状況を事前に把握でき、適切な人員配置やシフト管理の効率化を実現。

単眼カメラによる深度推定

単眼カメラによる深度推定

単眼の車載カメラ映像を用いて距離の推定を行い、複眼カメラ同様の精度を実現。学習の際は複眼で撮影した動画を使用して深度推定アルゴリズムを構築しており、実運用時には、単眼で撮影した映像を用いた推定が可能です。また、車・人・信号・標識などの物体を認識するアルゴリズムと組み合わせることで、認識した物体までの距離も推定可能です。小型の単眼カメラで実現可能のため、コストダウンと省スペース化に繋がります。

産業
分析テーマ
活用データ
詳しくみる
旅行者の行動パターン分析・可視化

旅行者の行動パターン分析・可視化

位置情報データを用いてエリア別の滞留ユーザー数・滞留時間を分析して可視化し、一時的な通過や居住者カウントされないよう除外するアルゴリズムを構築。旅行者の滞留状況を細分化することで、移動者と滞在者それぞれに最適な施策を展開。

産業
分析テーマ
活用データ
分析手法
複数のセンサーデータを活用した異常動作検知

複数のセンサーデータを活用した異常動作検知

正常時のセンサーデータのみを用いてアルゴリズムを構築し、検査データ中に現れる異常を検知することで、それまで熟練者の感覚に頼っていた異常検知をAIで代替。技術伝承と省人化の両面から人手不足を解消できます。異常データが存在せず教師あり学習ができない場合でも、時系列的な変化・複数の要因を考慮できる隠れマルコフモデル(状態空間モデル)を用いて正常時から逸脱する値を異常と判定することで、アルゴリズム構築が可能。また、複数種類のセンサーデータの組み合わせに対応可能のため、人間では認識しにくい異常も検知できます。

産業
分析テーマ
活用データ
分析手法
詳しくみる
子育て支援チャットボット

子育て支援チャットボット

子どもの年齢や居住地域に合わせて、妊産婦や子育て世代に向けた子育てに関する様々な情報をOne to Oneコミュニケーションで提供できる仕組みをAIチャットボットとSNSツールの連携で実現。これにより、ユーザーが日中の忙しい時間に電話やメールで問い合わせをしなくても、開庁時間外でも必要な情報を取得できる環境を提供。

活用データ
分析手法