SERVICE

ALBERTができること

お客様の課題解決において、ALBERTの各サービス(AI・データ分析/研究開発支援、プロダクト、データサイエンティスト育成支援)が実現できることを、
テーマ・活用データ・分析手法・産業別にご紹介いたします。

ピックアップ

実店舗向けチラシ配布の最適化

実店舗向けチラシ配布の最適化

チラシ投下のタイミングと売上最大化の最適値について、時系列や競合店舗の影響を考慮してデータを分析。売上上昇スコアを算出する予測アルゴリズムを構築することで、チラシ投下量を店舗別に計画し、チラシ配布費用の最適化と売上の最大化を実現。

複数のセンサーデータを活用した異常動作検知

複数のセンサーデータを活用した異常動作検知

正常時のセンサーデータのみを用いてアルゴリズムを構築し、検査データ中に現れる異常を検知することで、それまで熟練者の感覚に頼っていた異常検知をAIで代替。技術伝承と省人化の両面から人手不足を解消できます。異常データが存在せず教師あり学習ができない場合でも、時系列的な変化・複数の要因を考慮できる隠れマルコフモデル(状態空間モデル)を用いて正常時から逸脱する値を異常と判定することで、アルゴリズム構築が可能。また、複数種類のセンサーデータの組み合わせに対応可能のため、人間では認識しにくい異常も検知できます。

産業
分析テーマ
活用データ
分析手法
詳しくみる
細胞の分類自動化

細胞の分類自動化

従来では専門家が手動で行っていた細胞の分類について、アルゴリズムを構築し自動で判別。また、細胞名ラベルを付与したデータを用いて学習させ、分類正解率を確認してアルゴリズムをチュー二ング。新たな画像を追加することで自動的に再学習し精度を向上させるシステムを開発し、作業効率の向上を実現。

産業
分析テーマ
活用データ
仕入れの発注量を判断する需給予測モデル

仕入れの発注量を判断する需給予測モデル

発注・在庫をシンプルに管理するために、商品の売上個数を予測し仕入れの発注量を判断する需給予測アルゴリズムを構築。複数のアルゴリズムを検証の上、最適なアルゴリズムを構築し誤差数を大幅に改善。これにより、属人的に人がExcelを用いて行ってきた作業から脱却し、予測精度の向上と業務効率化を実現。

サーバーラックの吸気温度予測精度向上

サーバーラックの吸気温度予測精度向上

サーバーラックにおける、吸気温度の上昇を理由とした異常発生を防ぐため、各サーバーラックおよび空調の消費電力等のデータを用いて、吸気温度の変化を予測するアルゴリズムを構築。これにより、空調設備を適切な温度で管理でき、電気代等の経費削減に成功。

産業
分析テーマ
活用データ
分析手法
書類の文字読み取り自動化

書類の文字読み取り自動化

スキャナーから読み込んだ文書の画像データのレイアウト解析を行い、項目ごとの文字列(活字)を認識して返すアルゴリズムを構築。画像を補正するアルゴリズムを活用して透かし模様等のノイズに頑健なアルゴリズムを構築することで、OCR(光学的文字認識)では精度が出ないような画像に対しても文字認識精度を向上でき、99%以上の正答率で識別に成功。これにより、これまで人の手で行っていた入力作業を自動化し、コストやミスを削減できます。

詳しくみる
カタログ送付量の削減と受注数の向上による収益の最大化

カタログ送付量の削減と受注数の向上による収益の最大化

行動データや属性データを加味した総合的なスコアリングを実施し、購買に繋がりやすい顧客を抽出をするためのアルゴリズムを構築。従来はRFM分析(Recency/Frequency/Monetaryの3つの指標で顧客をグループ化し、マーケティング施策を講じる手法)を用いたアルゴリズムを採用していましたが、それ以外の要因(変数)を追加したアルゴリズムの再構築により、カタログ送付で効果のある顧客を抽出でき、送付量の削減と全体の受注数の向上による収益の最大化を実現。