SERVICE

ALBERTができること

お客様の課題解決において、ALBERTの各サービス(AI・データ分析/研究開発支援、プロダクト、データサイエンティスト育成支援)が実現できることを、
テーマ・活用データ・分析手法・産業別にご紹介いたします。

ピックアップ

UNIX不正コマンドの自動検知

UNIX不正コマンドの自動検知

異常(不正処理)データが存在しないため、正常データのみで学習し、不正コマンドを自動検知するアルゴリズムを構築。当てはまりが著しく悪い場合を異常と判定しサーバー管理者にアラートを出す仕組みを開発することで、社内業務における不正行為(情報漏洩行為など)を抑止できます。

産業
分析テーマ
活用データ
分析手法
顧客育成を目的としたデータドリブンマーケティング

顧客育成を目的としたデータドリブンマーケティング

新規・既存顧客の継続率向上 、ロイヤル化、DMやカタログのCVR向上を目的として、データドリブンマーケティングを実施。ロイヤルカスタマー分析によるターゲット選定・施策の評価や、ブランド間共起分析による推奨商品の特定、顧客クラスター分析によるコンテンツ内容の決定等、さまざまなデータを活用したマーケティング分析を実行。これにより顧客タイプごとの趣向性を把握でき、DM・カタログ・メールなどで各顧客タイプに合わせたコミュニケーション設計を実現。

詳しくみる

3次元空間上での位置・姿勢の把握

3次元点群情報の点にラベルやカテゴリを関連付ける「点群セグメンテーション」の技術を用いて、従来のRGB画像による2次元データのセグメンテーション(領域検出)では不可能だった3次元空間上での位置関係や姿勢を把握することができます。自動運転における障害物、野菜等の不定形の物体のピッキング、災害予測等にも応用可能。

対象物の検出と位置・姿勢情報の算出

ロボティクスの要素技術である「3次元点群マッチング」により、工場内ライン作業等、作業員が手動で行っていたピッキング等の作業を自動化。3Dセンサーを用いて得られた3次元点群データを元に対象物を検出し、3次元空間上におけるロボットと対象物の相対位置、角度情報を算出します。人が行っていた作業をロボットによるピッキング作業に置き換えることで自動化が可能。

正常な画像データのみを活用した外観不良検知

正常な画像データのみを活用した外観不良検知

不良データがない場合にも、正常時の画像データを数百枚学習し、正常ではないと判断された画像に対して「不良」と判定する外観不良検知アルゴリズムを構築。これにより、人の目による再検査が大量に発生する従来の外観検査装置とは異なり、人の目による判断に近いアルゴリズムを用いて再検査を減らすことで、人手不足を解消できます。また、注目箇所の可視化により画像内のどこを重視して判断したのかを確認できるため、判断のブラックボックス化を回避可能です。

詳しくみる

3次元空間における位置推定・地図作成

自動運転やAGV、ロボティクス等の分野で採用され、近年注目を集めている3次元データの活用方法の一つである「3次元SLAM(Simultaneous Localization and Mapping)」を用いて、LiDARやDepthセンサーのような3次元センサー、またはRGBの単眼カメラ、IMU等のセンサーを使用して3次元空間における位置特定と地図作成を同時に行います。これにより、GPS等の使用できない屋内やトンネル内での自動運転、自走式ロボットの要素技術を実現。

活用データ
工業生産の最適化

工業生産の最適化

人が生産時のパラメータを調整する場合には時間も検討できる組み合わせも限界がありますが、AIで代替することで、従来手法では検討できなかった組み合わせも検討対象に含めた上で加工条件の予測を最適化。既存データで実行可能性を十分検証した上で従来手法をベイズ最適化に置き換えて自動化し、効率的に最適値を求めることが可能です。これにより、品質の安定と省力化を実現し、歩留まり率を高めます。

詳しくみる