SERVICE

ALBERTができること

お客様の課題解決において、ALBERTの各サービス(AI・分析プロジェクト、プロダクト、データサイエンティスト育成支援)が実現できることを、
テーマ・活用データ・分析手法・産業別にご紹介いたします。

ピックアップ

実店舗向けチラシ配布の最適化

チラシ投下のタイミングと売上最大化の最適値について、時系列や競合店舗の影響を考慮してデータを分析。売上上昇スコアを算出する予測アルゴリズムを構築することで、チラシ投下量を店舗別に計画し、チラシ配布費用の最適化と売上の最大化を実現。

複数のセンサーデータを活用した異常動作検知

正常時のセンサーデータのみを用いてアルゴリズムを構築し、検査データ中に現れる異常を検知することで、それまで熟練者の感覚に頼っていた異常検知をAIで代替。技術伝承と省人化の両面から人手不足を解消できます。異常データが存在せず教師あり学習ができない場合でも、時系列的な変化・複数の要因を考慮できる隠れマルコフモデル(状態空間モデル)を用いて正常時から逸脱する値を異常と判定することで、アルゴリズム構築が可能。また、複数種類のセンサーデータの組み合わせに対応可能のため、人間では認識しにくい異常も検知できます。

産業
分析テーマ
活用データ
分析手法
詳しくみる

電力需要の予測

過去の電力需要および気象データ、曜日データをもとに、エリアごとの電力需要を予測するアルゴリズムを構築。時間単位で精度を検証することで高精度な予測アルゴリズムを実現。これにより過剰な発電によるコストを抑えます。

詳しくみる

データサイエンティスト育成支援

データドリブンマーケティングを促進することを目的として、マーケティング担当者様向けに、ALBERTのデータサイエンティストが基本的な統計学やRの基礎プログラム等の講義を実施。データに対しての正しい見方や評価方法を学ぶことで、実践で活用できる知識を習得。

顧客育成を目的としたデータドリブンマーケティング

新規・既存顧客の継続率向上 、ロイヤル化、DMやカタログのCVR向上を目的として、データドリブンマーケティングを実施。ロイヤルカスタマー分析によるターゲット選定・施策の評価や、ブランド間共起分析による推奨商品の特定、顧客クラスター分析によるコンテンツ内容の決定等、さまざまなデータを活用したマーケティング分析を実行。これにより顧客タイプごとの趣向性を把握でき、DM・カタログ・メールなどで各顧客タイプに合わせたコミュニケーション設計を実現。

詳しくみる

サーバーラックの吸気温度予測精度向上

サーバーラックにおける、吸気温度の上昇を理由とした異常発生を防ぐため、各サーバーラックおよび空調の消費電力等のデータを用いて、吸気温度の変化を予測するアルゴリズムを構築。これにより、空調設備を適切な温度で管理でき、電気代等の経費削減に成功。

産業
分析テーマ
活用データ
分析手法

バッテリー劣化予測

車輌から取得したデータを用いて、バッテリーの劣化状況を予測するアルゴリズムを構築。数ヶ月以内の劣化を予測し、交換が必要になる会員に事前通知する仕組みを実現。

産業
分析テーマ
活用データ
分析手法