SERVICE

ALBERTができること

お客様の課題解決において、ALBERTの各サービス(AI・データ分析/研究開発支援、プロダクト、データサイエンティスト育成支援)が実現できることを、
テーマ・活用データ・分析手法・産業別にご紹介いたします。

ピックアップ

仕入れの発注量を判断する需給予測モデル

仕入れの発注量を判断する需給予測モデル

発注・在庫をシンプルに管理するために、商品の売上個数を予測し仕入れの発注量を判断する需給予測アルゴリズムを構築。複数のアルゴリズムを検証の上、最適なアルゴリズムを構築し誤差数を大幅に改善。これにより、属人的に人がExcelを用いて行ってきた作業から脱却し、予測精度の向上と業務効率化を実現。

位置情報を活用したユーザー店舗滞在判定

位置情報を活用したユーザー店舗滞在判定

各ユーザーの Wi-Fiアクセスポイント履歴から、滞在した店舗を推定し行動予測するアルゴリズムを構築。これにより、ユーザのアクセスポイント(位置情報)から滞在地や移動先を推定可能となり、ユーザーの行動に応じた最適な情報配信を実現。

産業
分析テーマ
活用データ
分析手法
バッテリー劣化予測

バッテリー劣化予測

車輌から取得したデータを用いて、バッテリーの劣化状況を予測するアルゴリズムを構築。数ヶ月以内の劣化を予測し、交換が必要になる会員に事前通知する仕組みを実現。

産業
分析テーマ
活用データ
分析手法
車載カメラ動画から車両識別・構造物識別

車載カメラ動画から車両識別・構造物識別

車載カメラの動画データを用いて障害物、走行車、歩行者等を自動的に識別するアルゴリズムを構築。これにより、レーンごとの車両有無を特定し、自車が走行しているレーンの特定が可能。また、従来の画像認識手法をディープラーニングに置き換えることにより、道路上の白線や縁石などの識別困難な画像の識別精度向上を実現。

産業
分析テーマ
活用データ
電力需要の予測

電力需要の予測

過去の電力需要および気象データ、曜日データをもとに、エリアごとの電力需要を予測するアルゴリズムを構築。時間単位で精度を検証することで高精度な予測アルゴリズムを実現。これにより過剰な発電によるコストを抑えます。

詳しくみる
交通事故要因推定アルゴリズムの構築

交通事故要因推定アルゴリズムの構築

交通事故を減少させる目的で、交通事故要因を解明するアルゴリズムを構築。交通事故における内的要因(事故内容や当事者の属性など)と外的要因(天候、路面状況など)を分析し、特徴と傾向から事故発生との関係性の強弱を解明。これにより、開通前の新しい道路を含め、交通道路の安全性を高める対策を事前に講じることを可能にした。

売上予測に基づく食材調達の最適化

売上予測に基づく食材調達の最適化

賞味期限がある商品を扱う店舗にて、販売不振による過剰在庫の発生・需要過多による材料不足などの販売機会損失を防ぐため、日々の売上データ等を用いて最適な材料調達量や商品の売れ行きなどを予測するアルゴリズムを構築。売上データ、商品データ、店舗データの他に、気象データ、イベントデータなどを採用することで、精度の高い最適化アルゴリズムを実現。