アクセスデータとは、Webサイト内での利用履歴や行動履歴、購買履歴を各デバイスIPごとやユーザー単位で取得することができるデータです。
アクセスデータを活用することにより、ALBERTのAI技術・分析技術が実現できることの一例をご紹介します。
ALBERTには、さまざまなデータを用いたAI活用事例が多数ございますので、AI導入・分析のお悩みはぜひご相談ください。
異常(不正処理)データが存在しないため、正常データのみで学習し、不正コマンドを自動検知するアルゴリズムを開発。当てはまりが著しく悪い場合を異常と判定しサーバー管理者にアラートを出す仕組みを開発することで、社内業務における不正行為(情報漏洩行為など)を抑止できます。
さまざまな業種や分野で、DX(デジタルトランスフォーメーション)への取り組みが推奨されています。日本でも経済産業省が推奨するなどして、DXへの注目度が集まっています。しかし、企業もDXの重要性を理解していても、日本国内において未だ成功事例が少ないのが現状です。DXを本来の意味で推進していくためには、システム、分析、組織が一体となり経営目標に向かって取り組む必要があります。
大容量データを処理する技術やデータ処理を減らすためのノウハウを活用し、処理を大幅に高速化。また、従来のITシステム構築とは異なり、ウォーターフォール型の開発手法とアジャイル開発をうまく組み合わせることにより、スピーディかつユーザーフレンドリーなシステム構築が可能に。試行錯誤しながらダッシュボード開発を進めることで、迅速なデータの可視化を実現し、運用負荷を軽減。
新規・既存顧客の継続率向上 、ロイヤル化、DMやカタログのCVR向上を目的として、データドリブンマーケティングを実施。ロイヤルカスタマー分析によるターゲット選定・施策の評価や、ブランド間共起分析による推奨商品の特定、顧客クラスター分析によるコンテンツ内容の決定等、さまざまなデータを活用したマーケティング分析を実行。これにより顧客タイプごとの趣向性を把握でき、DM・カタログ・メールなどで各顧客タイプに合わせたコミュニケーション設計を実現。