お問い合わせ
Go to Top

SERVICE

分析テーマ

異常を検知したい

異常検知とはデータから通常のパターンとは異なる挙動を検出することです。日々蓄積されるセンサーデータを監視し、予期せぬ故障を減らすことで、設備の稼働率向上や作業員の安全性確保が期待できます。

 

異常検知はその用途によって「故障検知」や「不正使用検知」などと呼ばれることもあります。しかし、どれも「大多数のデータとは振る舞いが異なるデータを検出する技術」であることに変わりはありません。ビッグデータが存在すれば、その中には必ずと言っていいほど異常なデータが存在します。異常データの効率的な検出はビッグデータの活用において極めて重要です。

 

近年、異常検知で用いられるデータは非構造化データが多く、実際のビジネスで活用する際にはデータ分析に関する高度な知識と幅広い経験が必要です。ALBERTでは高い専門性を持つ経験豊富なデータサイエンティストが異常検知の問題に取り組んでいます。

※非構造化データ:特定の構造を持たないデータを指し、メール、文書、画像、動画、音声などのほか、Webサイトのログなど

 

 

【異常検知の種類】

異常検知には大きく分けて3種類の方法があります。

 

 種類  外れ値検出  変化点検出  異常部位検出
 詳細 データを記録する上で生じた人為的なミスなど全体から大きく外れた値を検出する データの構造や性質が急激に変化する箇所を検出する 不正行為や不審行為など通常とは異なる動きを検出する
 イメージ図

※グラフはすべてイメージ例です

 

詳しくは当社データ分析基礎知識ページをご参考ください。
※異常検知の詳細説明はこちら
※時系列データに対する異常検知の詳細説明はこちら

 
 
 

画像データを用いた異常検知についてはこちらをご覧ください。
(ALBERTのAI・画像認識サービス「タクミノメ」サイトへ)

異常を検知したいのケース一覧

複数のセンサーデータを活用した製品劣化度合い判定アルゴリズム

使用に伴い摩耗・劣化していく製品の状態を判定するためのアルゴリズムを構築。現状は高価なセンサーを用いていたが、複数の安価なセンサーに置き換えることで安価かつ高頻度に製品状態を判定できるように改善。様々な種類の特徴量を作成することにより、製品の劣化度合いや劣化の種類を正確に判定できるアルゴリズムを実現。

複数のセンサーデータを活用した異常動作検知

正常時のセンサーデータのみを用いてアルゴリズムを構築し、検査データ中に現れる異常を検知することで、それまで熟練者の感覚に頼っていた異常検知をAIで代替。技術伝承と省人化の両面から人手不足を解消できます。異常データが存在せず教師あり学習ができない場合でも、時系列的な変化・複数の要因を考慮できる隠れマルコフモデル(状態空間モデル)を用いて正常時から逸脱する値を異常と判定することで、アルゴリズム構築が可能。また、複数種類のセンサーデータの組み合わせに対応可能のため、人間では認識しにくい異常も検知できます。

産業
分析テーマ
活用データ
分析手法

正常な画像データのみを活用した外観不良検知

不良データがない場合にも、正常時の画像データを数百枚学習し、正常ではないと判断された画像に対して「不良」と判定する外観不良検知アルゴリズムを構築。これにより、人の目による再検査が大量に発生する従来の外観検査装置とは異なり、人の目による判断に近いアルゴリズムを用いて再検査を減らすことで、人手不足を解消できます。また、注目箇所の可視化により画像内のどこを重視して判断したのかを確認できるため、判断のブラックボックス化を回避可能です。

UNIX不正コマンドの自動検知

異常(不正処理)データが存在しないため、正常データのみで学習し、不正コマンドを自動検知するアルゴリズムを構築。当てはまりが著しく悪い場合を異常と判定しサーバー管理者にアラートを出す仕組みを開発することで、社内業務における不正行為(情報漏洩行為など)を抑止できます。

産業
分析テーマ
活用データ
分析手法