お問い合わせ
Go to Top

SERVICE

分析テーマ

需要を予測したい

需要予測とは、ある目的や物について短期的または長期的な傾向を捉えて、未来の傾向を予測することです。近年、企業では様々なビッグデータを収集できるようになり、その実際のデータを活用して、商品やサービスに関連する需要要因を分析して市場調査や予測アルゴリズムを構築する動きが活発化しています。

 

ALBERTの需要予測では、製品(商品)の売上実績などの自社データやオープンデータを使用して需要を予測し、仕入れ、生産、投資、販売、在庫管理等の計画策定において必要不可欠な指標を算出いたします。これにより、設備・人員の最適配置や、製品(商品)の仕入れ量最適化、適正在庫による機会損失低減、余剰在庫削減等が可能となります。また、需要予測に基づいた販売計画の策定も可能です。

 

 
 

【特徴】

■オーダーメイド型で柔軟な対応

お客様の課題・目的・活用シーンに応じた設計が可能です。

■最適なアルゴリズムの構築

複数のアルゴリズムを検証し、最適な需要予測システムを開発します。

■ワンストップサポート

課題整理・目的設定、アルゴリズム構築、システム開発、運用までワンストップでサポートします。

 
 

【導入フロー】
ALBERTのデータサイエンティストがワンストップでご支援いたします。

 

 
 

【活用シーン】
例:新商品の需要予測
新商品の需要を予測する場合、販売開始のX日前とY日後における販売数をそれぞれ予測します。 販売開始前の予測は新規発注に役立てることができ、販売開始後の予測は実購買データを活用することで追加生産・追加発注に役立てることができます。

 

 
 

【課題と期待できる効果】
■課題
・Excelを使ってデータ管理しており、全体が把握できず、需要予測が難しい。適切な発注量が判断できない。
・バイヤーは、発注業務に多くの時間を使っており、本来の良い商品を探す業務に時間を使えない。

■施策
商品データや販売データ、閲覧データ等さまざまなデータを活用して自動的に予測値を算出する需要予測アルゴリズムを構築することで、Excelを使った人手作業をシステム化(自動化)

■効果
・需要予測システムを導入した結果、適切な発注量を判断でき、適切な在庫を実現。
・発注業務を効率化することで、バイヤーは良い商品を探してお客様に届ける本来の業務に集中できる。

需要を予測したいのケース一覧

オープンデータを活用したマーケティング戦略支援

自社で蓄積したデータ以外のオープンデータも活用し、来店者数やリピート率などの従来指標だけでなく、販売戦略や商品開発に必要な指標を新たに算出。また、データドリブンな方針策定に必要なKPIをBIツールで管理できる環境を構築し、経営層から現場まで誰もが同じデータを共有することで、より迅速な意思決定が可能となり、幅広い視野や顧客の目線に近い視点のもとマーケティングを行うことができます。

電力需要の予測

過去の電力需要および気象データ、曜日データをもとに、エリアごとの電力需要を予測するアルゴリズムを構築。時間単位で精度を検証することで高精度な予測アルゴリズムを実現。これにより過剰な発電によるコストを抑えます。

仕入れの発注量を判断する需給予測モデル

発注・在庫をシンプルに管理するために、商品の売上個数を予測し仕入れの発注量を判断する需給予測アルゴリズムを構築。複数のアルゴリズムを検証の上、最適なアルゴリズムを構築し誤差数を大幅に改善。これにより、属人的に人がExcelを用いて行ってきた作業から脱却し、予測精度の向上と業務効率化を実現。

売上予測に基づく食材調達の最適化

賞味期限がある商品を扱う店舗にて、販売不振による過剰在庫の発生・需要過多による材料不足などの販売機会損失を防ぐため、日々の売上データ等を用いて最適な材料調達量や商品の売れ行きなどを予測するアルゴリズムを構築。売上データ、商品データ、店舗データの他に、気象データ、イベントデータなどを採用することで、精度の高い最適化アルゴリズムを実現。

実店舗向けチラシ配布の最適化

チラシ投下のタイミングと売上最大化の最適値について、時系列や競合店舗の影響を考慮してデータを分析。売上上昇スコアを算出する予測アルゴリズムを構築することで、チラシ投下量を店舗別に計画し、チラシ配布費用の最適化と売上の最大化を実現。

店舗の契約手続き数の予測

過去の来店者データ等を活用し、店舗ごとの契約手続き数を予測するアルゴリズムを構築。来店者データ以外に週効果や祝日効果、キャンペーン効果、天気効果など複数の要因(変数)を加味して組み込むことで、具体的な契約手続き数を予測できます。これにより、店舗ごとの混雑状況を事前に把握でき、適切な人員配置やシフト管理の効率化を実現。