お問い合わせ
Go to Top

SERVICE

分析手法

多変量解析

多変量解析とは、多くの情報(変数に関するデータ)を、分析者の仮説に基づいて関連性を明確にする統計的方法です。主に複数の変数から何らかの結果を予測する際に活用されています。

多変量解析のケース一覧

顧客育成を目的としたデータドリブンマーケティング

新規・既存顧客の継続率向上 、ロイヤル化、DMやカタログのCVR向上を目的として、データドリブンマーケティングを実施。ロイヤルカスタマー分析によるターゲット選定・施策の評価や、ブランド間共起分析による推奨商品の特定、顧客クラスター分析によるコンテンツ内容の決定等、さまざまなデータを活用したマーケティング分析を実行。これにより顧客タイプごとの趣向性を把握でき、DM・カタログ・メールなどで各顧客タイプに合わせたコミュニケーション設計を実現。

中古車価格予測アルゴリズム構築

精度のさらなる向上を目的として、中古車価格予測アルゴリズムを構築。過去に実施した車両単位の査定価格と、生産からの経過による価格減衰を組み合わせ、車種ごとに分析を行い、新車価格からの減法方式で価格を予測。これにより、中古車販売価格の予測精度が向上し、適正価格での販売を実現。

複数のセンサーデータを活用した製品劣化度合い判定アルゴリズム

使用に伴い摩耗・劣化していく製品の状態を判定するためのアルゴリズムを構築。現状は高価なセンサーを用いていたが、複数の安価なセンサーに置き換えることで安価かつ高頻度に製品状態を判定できるように改善。様々な種類の特徴量を作成することにより、製品の劣化度合いや劣化の種類を正確に判定できるアルゴリズムを実現。

オープンデータを活用したマーケティング戦略支援

自社で蓄積したデータ以外のオープンデータも活用し、来店者数やリピート率などの従来指標だけでなく、販売戦略や商品開発に必要な指標を新たに算出。また、データドリブンな方針策定に必要なKPIをBIツールで管理できる環境を構築し、経営層から現場まで誰もが同じデータを共有することで、より迅速な意思決定が可能となり、幅広い視野や顧客の目線に近い視点のもとマーケティングを行うことができます。

データサイエンティスト育成支援

データドリブンマーケティングを促進することを目的として、マーケティング担当者様向けに、ALBERTのデータサイエンティストが基本的な統計学やRの基礎プログラム等の講義を実施。データに対しての正しい見方や評価方法を学ぶことで、実践で活用できる知識を習得。

位置情報を活用したユーザー店舗滞在判定

各ユーザーの Wi-Fiアクセスポイント履歴から、滞在した店舗を推定し行動予測するアルゴリズムを構築。これにより、ユーザのアクセスポイント(位置情報)から滞在地や移動先を推定可能となり、ユーザーの行動に応じた最適な情報配信を実現。

産業
分析テーマ
活用データ
分析手法

旅行者の行動パターン分析・可視化

位置情報データを用いてエリア別の滞留ユーザー数・滞留時間を分析して可視化し、一時的な通過や居住者カウントされないよう除外するアルゴリズムを構築。旅行者の滞留状況を細分化することで、移動者と滞在者それぞれに最適な施策を展開。

産業
分析テーマ
活用データ
分析手法

カタログ送付量の削減と受注数の向上による収益の最大化

行動データや属性データを加味した総合的なスコアリングを実施し、購買に繋がりやすい顧客を抽出をするためのアルゴリズムを構築。従来はRFM分析(Recency/Frequency/Monetaryの3つの指標で顧客をグループ化し、マーケティング施策を講じる手法)を用いたアルゴリズムを採用していましたが、それ以外の要因(変数)を追加したアルゴリズムの再構築により、カタログ送付で効果のある顧客を抽出でき、送付量の削減と全体の受注数の向上による収益の最大化を実現。

売上予測に基づく食材調達の最適化

賞味期限がある商品を扱う店舗にて、販売不振による過剰在庫の発生・需要過多による材料不足などの販売機会損失を防ぐため、日々の売上データ等を用いて最適な材料調達量や商品の売れ行きなどを予測するアルゴリズムを構築。売上データ、商品データ、店舗データの他に、気象データ、イベントデータなどを採用することで、精度の高い最適化アルゴリズムを実現。

実店舗向けチラシ配布の最適化

チラシ投下のタイミングと売上最大化の最適値について、時系列や競合店舗の影響を考慮してデータを分析。売上上昇スコアを算出する予測アルゴリズムを構築することで、チラシ投下量を店舗別に計画し、チラシ配布費用の最適化と売上の最大化を実現。

店舗の契約手続き数の予測

過去の来店者データ等を活用し、店舗ごとの契約手続き数を予測するアルゴリズムを構築。来店者データ以外に週効果や祝日効果、キャンペーン効果、天気効果など複数の要因(変数)を加味して組み込むことで、具体的な契約手続き数を予測できます。これにより、店舗ごとの混雑状況を事前に把握でき、適切な人員配置やシフト管理の効率化を実現。

バッテリー劣化予測

車輌から取得したデータを用いて、バッテリーの劣化状況を予測するアルゴリズムを構築。数ヶ月以内の劣化を予測し、交換が必要になる会員に事前通知する仕組みを実現。

産業
分析テーマ
活用データ
分析手法