お問い合わせ
Go to Top

SERVICE

分析テーマ

最適化したい

制約条件がある中で複数の選択肢を組み合わせ何らかの成果を出すとき、その成果を最大にすることができます。品質改善(歩留まり改善)、リソース最適化、ルート最適化などに活用できます。

最適化したいのケース一覧

工業生産の最適化

人が生産時のパラメータを調整する場合には時間も検討できる組み合わせも限界がありますが、AIで代替することで、従来手法では検討できなかった組み合わせも検討対象に含めた上で加工条件の予測を最適化。既存データで実行可能性を十分検証した上で従来手法をベイズ最適化に置き換えて自動化し、効率的に最適値を求めることが可能です。これにより、品質の安定と省力化を実現し、歩留まり率を高めます。

カタログ送付量の削減と受注数の向上による収益の最大化

行動データや属性データを加味した総合的なスコアリングを実施し、購買に繋がりやすい顧客を抽出をするためのアルゴリズムを構築。従来はRFM分析(Recency/Frequency/Monetaryの3つの指標で顧客をグループ化し、マーケティング施策を講じる手法)を用いたアルゴリズムを採用していましたが、それ以外の要因(変数)を追加したアルゴリズムの再構築により、カタログ送付で効果のある顧客を抽出でき、送付量の削減と全体の受注数の向上による収益の最大化を実現。

売上予測に基づく食材調達の最適化

賞味期限がある商品を扱う店舗にて、販売不振による過剰在庫の発生・需要過多による材料不足などの販売機会損失を防ぐため、日々の売上データ等を用いて最適な材料調達量や商品の売れ行きなどを予測するアルゴリズムを構築。売上データ、商品データ、店舗データの他に、気象データ、イベントデータなどを採用することで、精度の高い最適化アルゴリズムを実現。

実店舗向けチラシ配布の最適化

チラシ投下のタイミングと売上最大化の最適値について、時系列や競合店舗の影響を考慮してデータを分析。売上上昇スコアを算出する予測アルゴリズムを構築することで、チラシ投下量を店舗別に計画し、チラシ配布費用の最適化と売上の最大化を実現。