SERVICE

活用データ

売上データ

売上データとは、企業会計で用いられる収益の分類のひとつで、企業の本業の商品やサービスによる収益を数値化したデータです。
日別、週別、月次、年次などで管理され、企業経営に必要不可欠なデータです。
 
売上データを活用することにより、ALBERTのAI技術・分析技術が実現できることの一例をご紹介します。
ALBERTには、さまざまなデータを用いたAI活用事例が多数ございますので、AI導入・分析のお悩みはぜひご相談ください。

売上データのケース一覧

dotDataを活用した 伴走型​データドリブンDX支援

さまざまな業種や分野で、DX(デジタルトランスフォーメーション)への取り組みが推奨されています。日本でも経済産業省が推奨するなどして、DXへの注目度が集まっています。しかし、企業もDXの重要性を理解していても、日本国内において未だ成功事例が少ないのが現状です。DXを本来の意味で推進していくためには、システム、分析、組織が一体となり経営目標に向かって取り組む必要があります。

顧客育成を目的としたデータドリブンマーケティング

顧客育成を目的としたデータドリブンマーケティング

新規・既存顧客の継続率向上 、ロイヤル化、DMやカタログのCVR向上を目的として、データドリブンマーケティングを実施。ロイヤルカスタマー分析によるターゲット選定・施策の評価や、ブランド間共起分析による推奨商品の特定、顧客クラスター分析によるコンテンツ内容の決定等、さまざまなデータを活用したマーケティング分析を実行。これにより顧客タイプごとの趣向性を把握でき、DM・カタログ・メールなどで各顧客タイプに合わせたコミュニケーション設計を実現。

中古車価格予測アルゴリズム構築

中古車価格予測アルゴリズム構築

精度のさらなる向上を目的として、中古車価格予測アルゴリズムを構築。過去に実施した車両単位の査定価格と、生産からの経過による価格減衰を組み合わせ、車種ごとに分析を行い、新車価格からの減法方式で価格を予測。これにより、中古車販売価格の予測精度が向上し、適正価格での販売を実現。

カタログ送付量の削減と受注数の向上による収益の最大化

カタログ送付量の削減と受注数の向上による収益の最大化

行動データや属性データを加味した総合的なスコアリングを実施し、購買に繋がりやすい顧客を抽出をするためのアルゴリズムを構築。従来はRFM分析(Recency/Frequency/Monetaryの3つの指標で顧客をグループ化し、マーケティング施策を講じる手法)を用いたアルゴリズムを採用していましたが、それ以外の要因(変数)を追加したアルゴリズムの再構築により、カタログ送付で効果のある顧客を抽出でき、送付量の削減と全体の受注数の向上による収益の最大化を実現。